
C H A P T E R

1
That Horrible Sinking

Feeling
Insight into web application security and why you should care about it

I remember it quite clearly. I woke up, stumbled to the coffeemaker to
start a brew, went back to my computer to look for updates on the phpBB
message board to chat with some friends, and was panicked by what I saw:
My home page had been replaced by a message from the ‘‘SantyWorm’’
that looked something like Figure 1-1.

Figure 1-1 Imagine if your website were replaced with this.

My heart began to race, and I worried about what might have happened
and how I might fix it. I poked around the administrator pages of the site,
but every way that I tried to fix it was met with the ‘‘hax0rs lab’’ message
mocking me. Then, defeated, I slumped over in my chair, hung my head,
and exhaled deeply. All I wanted was a forum to talk with my friends. I’d
never considered that I would need to update that software from time to
time. I was naı̈ve.

3

CO
PYRIG

HTED
 M

ATERIA
L

4 Part I ■ Anatomy of Vulnerabilities

Avoiding That Sinking Feeling

If you’ve had that experience, you know it’s not a good one. The best-case
scenario is the one that I was in—I had a recent backup of both the
files and the database. I used a web-server-level password to lock out
access from everyone but me, deleted everything, restored the backup,
upgraded my site to the latest version of phpBB, and then let vis-
itors back into the site. The worst-case scenario—well that’s hard to
imagine.

What is the worst-case scenario if your site gets attacked and the security
is broken? Perhaps the usernames, passwords, and emails get stolen from
the site, which could then ultimately allow the attacker to log in to your
bank and take your money. Perhaps your site becomes a spam relay or
a download source for malware, infecting thousands of computers. Or
perhaps your site guards valuable proprietary information about your
company, which the attacker can copy without your knowledge. As Kevin
Mitnick wrote in his book The Art of Deception (Wiley Publishing, 2003),
‘‘When you steal money or goods, somebody will notice it’s gone. When
you steal information, most of the time no one will notice because the
information is still in their possession.’’

My goal with this book is to reach out to people who are naı̈ve about
how to keep a Drupal site secure. Perhaps you’re not as inexperienced as
I was—why did I think that I wouldn’t need to update the software!—but
there is a lot of information you will need to know to keep your Drupal
site secure. To some extent you can simply follow the security updates
closely, and that’s all you need to know. Then you would rely on the other
users of Drupal to make sure the software is secure. But . . . should you
trust them?

It’s Up to You

Sadly, the reality is that you cannot simply rely on other Drupal users to
keep the code safe. A surprising number of websites are configured inse-
curely. A similarly surprising number of contributed or custom modules
and themes contain logical or programmatic vulnerabilities. You must pay
attention if you are going to keep your site safe.

When you have finished reading this book, you will know what steps
you should take to protect a basic Drupal site, how to review a module to
find weaknesses and how to fix them, and what extra steps you can take to
protect your site if you need additional protection.

Chapter 1 ■ That Horrible Sinking Feeling 5

What Is Web Application Security?
I don’t want to get totally philosophical on you, but I do spend some time
with some deep thinkers up in Boulder. There are several aspects that
most people include in the concept of website security. Generally, a site is
secure if it is safe from danger or loss. For this book I’ll define site security
as follows: A site is secure if private data is kept private, the site cannot
be forced offline or into a degraded mode by a remote visitor, the site
resources are used only for their intended purposes, and the site content
can be edited only by appropriate users.

Keeping your site secure by that definition should be simple, and yet
there are dozens of methods to violate a part of the rule of security, and
hundreds of examples of vulnerabilities within the Drupal project have
been revealed over the last few years. So what can we do?

Security Is a Balance
You may already be feeling overwhelmed. To be perfectly safe requires so
much work—how can anyone do it? The fact is that a typical site shouldn’t
implement every security recommendation in this book. Running a site is
always a balance between what is practical, reasonable, and necessary.

Most security best practices have trade-offs from somewhere else. Sure,
it would make your site instantly safer to use an SSL certificate for every
visitor to every page, but that adds additional load on the server and
additional cost to you. Or if you use a self-signed certificate, it adds
additional work for your site visitors in order for it to work.

As the site administrator you must understand potential security weak-
nesses, your users, the priorities for your site, and your budget, and you
must balance them all. Hopefully you already know your budget and the
priorities for your site. Your users will probably let you know if a new
security process annoys them too much. It’s my job to explain the weak-
nesses and solutions so you can decide whether to implement them. On
the other hand, many of the recommendations are absolutes. There simply
is no reason to leave an SQL injection vulnerability in your site.

Common Ways Drupal Gets Cracked

This section is a review of some of the most common vulnerabilities found
in Drupal.

The Drupal API provides protection against most of these common
security vulnerabilities, but in order for that protection to work, themers
and module developers must actually use that API. Unfortunately it is often

6 Part I ■ Anatomy of Vulnerabilities

the case that new developers to Drupal are unaware of how to properly
use the API.

Vulnerabilities within the code of a site are the biggest category of
weaknesses. However, as you’ll see in Chapter 2, they are only one kind of
potential weakness in your site.

This chapter introduces the Vulnerable module. Drupal’s functionality
can be extended with the use of modules. Modules are a common source
of security weaknesses on sites. You can download the Vulnerable module
from http://crackingdrupal.com/content/drupal-vulnerable-module.

N O T E This URL is formatted with the full http:// on the front of it because you
are expected to actually visit it. Either example.com or the short-hand notation
for a URL that shows just the information after the Drupal root is used throughout
the rest of the book for URLs that are important less for their content than how the
data is used in the URL. For example, the URL for the login page in an example can
be expressed either as http://example.com/user or simply /user.

The purpose of the Vulnerable module is to provide easy-to-understand
examples of the different vulnerabilities covered in this book and how to
fix them. These examples are fake, but the vulnerabilities they represent
are real, and you only have to look at past security announcements to see
real-world examples of the flaws. This module is useful as an example
for the book and for your own study, but it should never be installed on
a real site.

N O T E The entire set of vulnerabilities attackers use is enormous and growing
all the time. Covering all of them would be a waste of your time. Instead, this book
covers just the most common and most important vulnerabilities so that you can
focus on what really matters.

Authentication, Authorization, and Sessions
The three interrelated concepts of authentication, authorization, and sessions
govern users and permissions. Together, they form a key part of a site’s
attack surface, because vulnerability here allows the attacker to pretend
to be another user on the site or do something that’s not allowed. In a
system like Drupal, where the administration interface is merged with the
regular interface, this area is even more critical. Finding a weakness here
may allow an attacker to assume the role of an administrative user or view
private content.

N O T E The attack surface of a site is like a map of the ways to crack into the
site. Certain parts of the attack surface are more likely to yield valuable results.

Chapter 1 ■ That Horrible Sinking Feeling 7

Authentication: Prove Your Identity

When you go to a bank and withdraw money from your account, the bank
has security processes to make sure that you are really the person who
has the permission to take this action. If you use an ATM, your ATM card
and PIN act as proof of your identity. If you go to an agent of the bank,
your driver’s license or passport may be your proof. Similarly, different
websites use various mechanisms to prove your identity.

By default Drupal uses the common username and password combina-
tion to authenticate users (see Figure 1-2). Numerous other contributed
modules can be used to enable alternate authentication mechanisms.

Figure 1-2 The login form.

Weaknesses in Authentication

There are several potential weaknesses related to authentication. The two
biggest are that users may choose a weak password and that on most sites
passwords are sent in plain text over communication methods that can be
intercepted—notably, unencrypted HTTP over unencrypted WiFi. Weak
passwords are vulnerable to a dictionary or brute force attack in which a
script attempts to log in to a site using common passwords and eventually
uses every possible combination of characters until it successfully logs in.

A less-common but still important concept is that of insufficient authen-
tication (Figure 1-3). Authentication is insufficient if, for the kinds of
transactions to be carried out, the proof of identity of the user is not strong
enough to provide sufficient certainty for the site. The sample Vulnerable
module has a feature that allows anyone to log in as any user simply by

8 Part I ■ Anatomy of Vulnerabilities

providing the user ID of whatever user she wishes to be. Especially in
Drupal where user IDs are sequential integers and where the user ID 1 is
all-powerful, this is probably a bad idea outside of an extremely controlled
environment (such as a development computer that is never connected to a
network). But it could be that the default username/password combination
that Drupal uses is insufficient if your site is a financial website or contains
valuable secret information. In that case you may want to use a third-party
identity verification system based on a stronger authentication mecha-
nism, such as an RSA SecurID token, sometimes referred to as an RSA
key fob.

Figure 1-3 Insufficient authentication from the Vulnerable module lets an attacker become
user 1, or 3, or 30, without any proof.

C A U T I O N In the example Vulnerable module, there is a dubious feature that
lets any user impersonate any other user on the site simply by specifying the user
ID number in the URL at vulnerable/insufficient-authentication/1.
Specifying the 1 is especially dangerous because user 1 on a Drupal site is a
special user who has been granted all roles. This may be handy on a development
site but is obviously dangerous for any other site. Figure 1-3 shows an account
right after someone used this feature to become user 1 on this site.

Chapter 1 ■ That Horrible Sinking Feeling 9

It is up to each site to determine an appropriate level of authentication for its
users. Often username and password are enough. However, as the example
Vulnerable module shows, it is possible for a contributed module to create a
situation that bypasses the normal login process and allows an attacker to gain
access of another user.

Authorization: Permissions and Access

One thing that makes Drupal a great system to use is its rich system of
roles and permissions. Permissions control actions that can be taken. Roles
are groups of permissions that can be granted to users. A site can have an
arbitrary number of roles, a role can have an arbitrary set of permissions,
and a user can have an arbitrary number of roles. When a user has two
roles, his or her total set of permissions is the union of the permissions for
those two roles. Two special roles—anonymous and authenticated—are
required on every site and define the permissions granted to any user
based on whether the user is logged in or not.

In addition, Drupal has a system of specific object access, which allows
third-party modules to define grants related to node and taxonomy objects.
This allows a site to have private and public nodes depending on the
taxonomy term applied to a node. This access system is covered in more
detail in Chapter 7.

Going back to the bank example, once you have established your identity
by an authentication means, you then may be limited in the actions you
can carry out—that you are authorized to do—based on your permissions
or on the level of authentication. For example, your ATM card and PIN are
relatively easy to steal, so users who use this authentication mechanism
are able to withdraw only a finite amount of money from the bank. On the
other hand, if you go to an agent of the bank and present your passport
and driver’s license and then request to withdraw a much larger sum of
money, the agent is likely to let you do so. You may be required to have a
specific level of permission on the account to be able to withdraw all the
money in the account or to close the account.

Weaknesses in authorization occur when a user is permitted to see data
or perform an action that should not be allowed. For example, a module
may show information that should be private, such as the email address
shown in Figure 1-4, or allow a user to delete or modify content she should
not be able to change.

The Vulnerable module contains an example that, even when used
properly, bypasses these two types of authorization. It is available to all

10 Part I ■ Anatomy of Vulnerabilities

visitors of the site and shows user email address information for any users
of the site based on characters found in their username. The style of the
query bypasses several layers of what would normally be proper user
authorization checks:

The list shows all users regardless of whether their accounts are
active, though Drupal normally doesn’t show profiles for inactive
users.

Email addresses should be shown only to users with the ‘‘administer
users’’ permission.

Only users with ‘‘access user profiles’’ permissions should be able to
see this data.

Figure 1-4 Authorization bypass reveals users’ email addresses.

This simple example shows how a module developer who wanted
to share information could easily create a situation where data is easily
available to site attackers. Later you will see how an attacker could combine
this page with SQL injection to get virtually any data from a site.

Session Management and Weaknesses

The Internet is based on HTTP protocol, which provides no system itself
for keeping track of users. When a user requests a page, the web server

Chapter 1 ■ That Horrible Sinking Feeling 11

sends it back and the interaction is complete. When a user requests the
next page, it may be handled by a different web server process or even a
completely different physical server.

Imagine if, in the bank example, you first proved your identity to one
agent of the bank and then when you wanted to make the withdrawal,
a different agent at the bank helped you. To keep track of who you are,
the bank might issue you a unique number. When you make a request
to do something, you also provide your number. The agent compares
that number to a list the bank keeps, and then the bank can be sure of
your identity. This is basically how session ID numbers work for web
applications.

Web application developers typically store the session ID in a cookie.
During every subsequent request to the web server, the user’s browser
sends this cookie to identify the user.

This process presents several opportunities for weaknesses. Because the
session identifier is stored on the client computer, an attacker can send any
session ID value with his requests. If he sends the session ID of a different
user, he can impersonate that user. If the session IDs are easily predictable
(for example, if they are just the user ID of the user or if they were based on
the user ID and the time that the user logged onto the site), then an attacker
can easily guess the session ID of a user to gain that user’s permission.
Fortunately, Drupal core handles the majority of session management for
Drupal and does a good job of following industry best practices for session
management.

However, if a normal site user is accessing a website over an unencrypted
connection such as a shared WiFi network, then an attacker could monitor
the traffic on the network, determine the session ID of the user, and then
use it in his own requests to pretend to be the other user. Possible solutions
to this problem include educating your users and using HTTPS for all
authenticated sessions.

A more common problem in Drupal is code similar to that shown here:

global $user;

$original_user = $user;

$user = user_load(array(’uid’ => 1));

my_module_code_to_do_stuff();

$user = $original_user;

This code allows a module to temporarily become another user, perform
some action as that user, and then switch back to the original user. If there
is a redirect or fatal error that stops the normal flow of code execution
before the user object has been set back to the original user, the user session
has been changed to a different user. Because this pattern is normally

12 Part I ■ Anatomy of Vulnerabilities

done to temporarily give the user more permissions than normal, it is an
opportunity for privilege escalation.

Command Execution: SQL Injection and Friends
Command execution generally includes operating system commands and
SQL injection. However, in general, this is a potential issue for all systems
that your site interacts with, such as XMLRPC, REST, and SOAP. The
basic problem is that data from the user (the content of your blog post) is
mixed with control information (the query to insert that content into the
database) and the combined string is executed against the database. This
book focuses on SQL injection more than other types of command injection
because it is the most common command-injection issue found in Drupal.
However, the same concepts apply to interactions with any system.

T I P SQL stands for Structured Query Language and is the name of the particular
language used to interact with databases. SQL is meant to be the same for all
databases, but in practice it varies widely from one database to another.

There are several common models for safely handling user data:

Rejecting known bad input: Using blacklists to filter input is the
process of refusing to accept data that contains items that are in
a list of inappropriate characters. This is not particularly useful
because it relies on the programmer to write code to handle an
exhaustive list of bad inputs. That is a difficult task in the first place
and impossible to do once you consider that new technologies
with new vulnerabilities are constantly being invented.

Accepting known good input: Using a whitelist to deter-
mine safe input is safer than rejecting known bad because
a list of safe input should stay safe into the future.

Both rejecting known bad and accepting known good are extremely
limited in their usefulness to store anything more than simple text without
any special characters. Drupal deals with rich data sets from clients such
as HTML, which makes these two strategies unsuitable. These methods
are not used in Drupal and therefore are not discussed in the rest of the
chapter. Some other options include:

Sanitizing data before it is stored works well in a simple system but
fails when the input is later used in a variety of contexts; rules to
sanitize the data for use in one context may not protect another con-
text. For example, sanitizing text to prevent XSS when you display

Chapter 1 ■ That Horrible Sinking Feeling 13

in the context of a browser will not protect a site from SQL injec-
tion when the data is used in the context of a database query. The
extremely flexible nature of Drupal requires that you use data in dif-
ferent contexts, so this architecture does not work for Drupal.

Safe data handling provides protection by using a means of interaction
that separates the user data from the control statements. An example
of this is using a parameterized query that contains no dynamic SQL.
Parameterized queries were designed at a basic level to provide pro-
tection for mixing user data and command data. Safe data handling
is useful where it is supported, but not all systems support it.

Boundary validation is the process of accepting all user
input and then filtering it upon output depending on
the nature of the boundary. Drupal relies primarily on
the boundary validation pattern (see Figure 1-5).

Drupal

The boundary

1 2

34

MySQL

You

Figure 1-5 Boundary validation.

In this diagram you can see the flow of a typical page-request cycle for
creating a new blog entry on a site. The data flows are labeled 1 through 4
and described as follows:

1. The user has posted the form to the web server, which hands the
data to Drupal. Drupal first makes semantic checks on the form
data to ensure that the user hasn’t tampered with the drop-downs,
check boxes, and radio buttons in the form to, for example,
create a blog post with a taxonomy term that is not allowed.

2. Drupal executes queries against the database to insert the user’s
blog entry for storage. At this phase Drupal is sending data beyond
its boundary, so it must filter it to make sure that any characters
inside the user data that may alter the impact of the SQL statements
are ‘‘escaped.’’ The escaping is done in a context-sensitive man-
ner. Since this is a database, the filtering is appropriate to SQL.

14 Part I ■ Anatomy of Vulnerabilities

T I P When interacting with other systems, certain characters have special
meanings. In SQL, the single quote is used to separate string data from the
rest of the statement. If a user has the last name O’Henry, then the single
quote in the name could be misinterpreted. To handle these situations, SQL
provides the slash escape character to allow the insertion of the single
quote character into the database.

3. This is where Drupal retrieves data from the database. In
general there are no concerns here, except that the system
must remember which fields in the database are generated
by the system (for example, sequential ID columns) and
which are user-provided values that must be filtered.

4. The retrieved data is shown to the user. Because the data from step 3
includes some data from users, the data is filtered prior to being sent
to the user’s browser. Much like step 2, this filtering should be done
in a context-sensitive manner that will work specifically for HTML
data being sent via HTTP and rendered in the context of a browser.

These strategies for validating user data are used for different reasons in
different areas. For example, Drupal rejects known bad data such as special
characters in usernames because they are inappropriate for usernames.
However, even after rejecting inappropriate characters, the query to insert
that username into the database and the functions—which prepare the
username for display to a browser—still perform boundary validation to
filter the username in a way that is useful in that context.

SQL Injection

The Vulnerable module provides several examples of SQL injection.
A simple example is available at the URL vulnerable/show-me-the-data/’

UNION SELECT uid, pass, init FROM users where 1=1 OR 1 =’
Using the SQL UNION keyword, you can append data from a totally

separate query into this page. In this example, you get the user ID, the
MD5 (Message-Digest algorithm 5) hashed version of the password, and
the email that was used when the account was created (stored in the init

field). You can see the result of this modification in Figure 1-6, where in
addition to the normal results you also see sensitive data like the hashed
version of the password and email address. With the hashed password
and email addresses of a user, an attacker can prey on the fact that most
users use a limited number of passwords and try to use that password and
email combination on commonly used websites.

Chapter 1 ■ That Horrible Sinking Feeling 15

T I P Instead of just storing your password, Drupal stores a unique string that is
derived from your password using a function. This is a one-way function, which
means that you can take a password, send it through the function, and get the
calculated hash value, but you cannot take a hash, reverse it through the function,
and get the password. That said, the MD5 function used by many systems,
including Drupal, is becoming increasingly unsafe given modern computer-
processing capabilities. Therefore, you should still protect the MD5 hash of the
password as if it were the password itself. In Drupal 7, the MD5 hash has been
replaced with a more secure hash.

Figure 1-6 SQL injection is being used to show any data an attacker might want.

In this example, the UNION query could be used to get information about
what other databases are on this server, the tables they contain, and the
data in those tables. If you have an e-commerce site, donations database, or
any private information such as email addresses or secret plans for world
domination, an attacker would be able to use a hole like this to see that
information.

Arbitrary File Upload

Another related problem is arbitrary file upload, which often leads to code
execution. Drupal has many features and modules that allow users to

16 Part I ■ Anatomy of Vulnerabilities

upload a file. Within core alone, there are the Upload module, user avatars,
the logo, and the favicon upload tool. Among contributed modules, there
are dozens of ways to upload files: image, imagefield, filefield, embedded
media field, video, and audio. Vulnerabilities in the code or configuration
of any of these features could allow an attacker to upload an arbitrary
file that contains PHP code, JavaScript, or another kind of code that can
compromise the security of your site.

Cross-Site Scripting

The basic purpose of Drupal is to take data from users, store it, and display
it back to other users. This can cause a problem when an attacker finds a
way to add code of some sort into the site so that it executes when other
users look at it. JavaScript is the most common vehicle for these attacks, but
any language that is executable by the browser can be used. This code has
the ability to take actions impersonating the user, and if the code runs on
your Drupal site, it has access to your full session and can do anything that
you as a user are able to do, like delete content or change your password.

Cross-site scripting (XSS) attacks can be reflected, stored, or DOM based:

Reflected XSS is any situation where user-supplied data from
a page request is immediately displayed back to the user.

Stored XSS is common in systems like Drupal, which store
user-supplied data into a database.

XSS attacks on the DOM directly alter the code—again, typically
JavaScript—rather than trying to inject code into the page itself.

The Vulnerable module has several examples of reflected and stored
XSS based on injecting JavaScript into the page. On the ‘‘vulnerable/
show-me-the-data’’ page it is possible to use the tag <IMG SRC=javascript:
alert(’XSS’)> as the last part of the URL and have the Opera browser
execute the JavaScript. Figure 1-7 shows the results of this attack.

Generating a JavaScript message window in a page is an easy way to
determine if the page is vulnerable—if you see the message, the page is
vulnerable. There are many more ways to execute more complex XSS,
though they often depend on different parsing rules or vulnerabilities of
the browser.

Cross-site scripting is another area where the concept of context-
appropriate boundary validation is used. Drupal provides a system of
HTML filters to remove malicious code from HTML before it is sent to the
browser. Of course, it’s up to the coder to actually use those HTML filters.

Chapter 1 ■ That Horrible Sinking Feeling 17

show-me-the-data/%3CIMG%SRC=javascript: alert(‘XSS’)%3E

Figure 1-7 A browser alert showing us that this page is vulnerable to reflected XSS.

Cross-Site Request Forgery
The nature of a cross-site request forgery (CSRF) is that an attacker can
make ‘‘you’’ do something without your knowledge. This is similar to
stealing your session but limited to specific actions on a site. There are two
basic types of CSRF: those based on GET requests and those based on POST

requests.

T I P The HTTP specification defines several types of server requests, among them
GET and POST requests. A GET request is probably the most common; it happens
every time you click a link or type an address into your browser. A POST is
generally what happens when you submit a form to a site.

Drupal core provides protection against a POST CSRF using a token
system. When a form is built using Drupal’s Form API (FAPI), a token
is added to the form based on the session ID and a private key from the
site. When the form is submitted, the Form API confirms the presence and
validity of the token. This requires that a POST to the site be based on a
current session and makes it more difficult for an attacker to develop a
generic attack on forms in Drupal.

18 Part I ■ Anatomy of Vulnerabilities

The more common problem in Drupal comes from modules that take
action based on a GET request. The Vulnerable module provides a feature
that disables user accounts based on the URL. This feature is demonstrated
in Figure 1-8.

Figure 1-8 Requesting this URL disables any user of the site.

This simple code can be exploited in a variety of ways, such as tricking
a user who has the permission to access the page into clicking on a
URL like http://example.com/vulnerable/csrf-disable/1 or, even easier,
getting the user to look at a page with an ‘‘image’’ embedded into it
with the source pointed at that URL: <img src=‘‘http://example.com/
vulnerable/csrf-disable/1’’>.

CSRF is increasingly not a problem for Drupal because the few remaining
modules that take actions like this are fixed to use a form of some sort.
However, it is often tempting when building a rich AJAX feature to slip
back into creating a CSRF vulnerability via GET requests. The security team
is working on an API to make this much easier for module developers, but
that API is not yet available. There are still methods that can be used to
provide security for links. The system is based on the same token system
used to protect Drupal forms. However, because this practice of taking
action in response to GET requests is not as common or standard as the form
system, there is no way to provide this protection automatically or easily.

Chapter 1 ■ That Horrible Sinking Feeling 19

The Big Scary World

Are you feeling overwhelmed yet? There are many ways for your site to
become insecure, and this chapter focused on the vulnerabilities in code. In
the next chapter you’ll learn about some of the problems outside Drupal,
and the list of potential problems gets even larger.

At this point, you should have a good understanding of some of
the issues involved in writing secure code. You should understand
authentication, authorization, sessions, and the relationships among
them. Often the results of a weakness in this area are the same—an
attacker pretending to be someone else or seeing something he
shouldn’t—but the nature of vulnerabilities is different. You should
understand code execution, the most common type of code execution
in Drupal—SQL injection—and the role that boundary validation plays
in protecting against code execution. You should understand cross-site
scripting, where boundary validation is also important. Finally, you
should know how to recognize a cross-site request forgery, where an
attacker can trick you into modifying your own site without you even
knowing it.

The Most Common Vulnerabilities

Looking back at all security announcements that have been posted
on drupal.org since 2005, you can see which are the most common
types of vulnerabilities; the vulnerabilities by type for Drupal core that
have been contributed since they were reported publicly are shown in
Table 1-1. Cross-site scripting is the single most common issue. The
ratio of problems is relatively consistent between core and contributed
modules.

This table shows us that over time the most common problem has
been cross-site scripting, which is also a very dangerous problem. Recent
changes to Drupal core will help to reduce this problem somewhat, but it
is still one of the biggest areas that need attention.

Comparing core versus contributed modules, it’s clear that contributed
modules are a source of a lot more occurrences—more than two times
as many—although when you look at vulnerabilities per line of code,
core has had more announced vulnerabilities than contributed modules.
Of course, this analysis covers only the issues that were reported to the
Drupal security team. There are many more issues that haven’t been found
yet or that a maintainer silently fixed.

20 Part I ■ Anatomy of Vulnerabilities

Table 1-1 Announced vulnerabilities by type for Drupal core and contributed code

OCCURRENCES AS A PERCENT
VULNERABILITY OCCURRENCES OF THE TOTAL

XSS 55 44

Access bypass 17 14

CSRF 12 10

SQL injection 12 10

Code execution 10 8

Clarifications and
announcements

4 3

Session fixation 3 2

Privilege escalation 2 4

Arbitrary file upload 2 4

Mail header injection 2 4

CAPTCHA bypass 2 4

HTTP response splitting 2 4

File overwrite 1 2

Logging sensitive data 1 2

Session impersonation 1 2

Summary

In this chapter, you learned about many kinds of vulnerabilities, but within
Drupal and this book it’s clear that the most important areas to focus on
are XSS, access bypass, CSRF, and SQL injection. These four types of
vulnerabilities are the focus of this book.

